If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5b^2+11b-12=0
a = 5; b = 11; c = -12;
Δ = b2-4ac
Δ = 112-4·5·(-12)
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-19}{2*5}=\frac{-30}{10} =-3 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+19}{2*5}=\frac{8}{10} =4/5 $
| 35-3=4x | | a^2+10a-32=-4 | | 807-y=512 | | 4n-10-2n+3=11 | | 18-7x=114 | | T-36+55+t-49=180 | | 4(x-3)+2x=-2x-28 | | 7.2+x)+5.3=x | | -35-3=4x | | 8x2+x+6=0 | | x2+12+11x+5+13x-17=180 | | 11x-11+10x=180 | | 4(x-3)+2x=2x-28 | | -9x(-x)=72 | | 105/m=3/4 | | 2.9-x=-6.04 | | 4y+6y+y+15=180 | | (9x-4)=(9x-4) | | 7x-1+5x-23=170 | | 2x+9=8x=21 | | −4(n−3)=12−4n | | 2x=15(21/2) | | 2x=15(2.5) | | 60°+60°+x=180 | | D=35g | | s+32+90+s+48=180 | | 3(2x–5)=6x–2 | | 6+-x=0 | | –9.4h=–2(4.6h−5.21) | | (7-4)/(r-6)=0 | | (2y-17)=40 | | 11x+4+17x+8=180 |